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1 Methods

1.1 ETG modeling overview

ETG modeling approach needs two inputs: (i) a qualitative abstraction of the dynamical
system, and (ii) quantitative knowledge. As results, one obtains three kinds of outputs:
quantitative simulations of the dynamical system that allows (i) a validation of our results
based on experimental knowledge at disposal and (ii) prediction of biological compound
behaviors over times. Furthermore, sensitivity analysis emphasizes (iii) a ranking of the
most important ETG transitions that must occur to satisfied the overall quantitative be-
havior of the system. Figure 1 pictures the modeling process overview. A matlab script
allows to perform the ETG modeling. It can be found here1.

1.2 Qualitative inputs of the ETG modeling

1. Defining the ETG graph (core model): The graph describes the qualitative behaviors
of the biological regulatory network by focusing on the products of the genes. As
described in the manuscript, a given gene stochastically regulated by the system either
product a increase of (gene+), or a decrease (gene−) of its protein quantity, which
characterizes what we call here two events that are related to a given gene. This
graph can be manually built using biological knowledge at disposal (i.e., knowing
what gene activation actives or represses what gene activations). When available,
one should consider to make this graph automatically from qualitative models. For
illustration, the following regulatory model of two genes formalized into a Piecewise

1http://pogg.genouest.org
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Figure 1: Flowchart of the ETG modeling process. For two given inputs, quantitative
knowledge of time series and qualitative biological knowledge, the ETG modeling technique
provides a simulation of the model and an automatic sensitivity analysis. Those results
can be further analyzed like for validation purposes.

Affine Differential Equations (PADE) system can be transformed into ETG graph in
two steps:
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The transformation from PADE systems to ETG structures is straightforward. First,
one produces a state transition graph from a PADE. It is classically obtained by fixing
some inequality constraints on the parameter of the system’s equations (see GNA
webpage for details). Second, the ETG is made from the state transition graph by
considering all possible successions of events, which is here mRNA changes. Precisely,
there exists an edge from state A to state B in the ETG graph if the two successive
transition paths A

−→ · B
−→ is present in the state transition graph.

This example is available in matlab. The ETG graph is described as a matlab
matrix in ExampleSqueleton that defines the corresponding {0, 1}-transition matrix.

This simple example has two latent variables v1 = px+→x+ and v2 = py+→y+ allowing
to express the unknown probability transition matrix of the model

v1 1− v1 0 0
0 v2 1− v2 0
0 0 0 1
1 0 0 0


2. Estimation of the impact of each transition: we consider a cost for taking each tran-

sition of the ETG graph. The cost is a direct impact on the protein production. As a
biological assumption, we assume the passive degradation rate (free parameter) to be
equal to 5% for both protein X and protein Y. The value of the active production and
degradation rates d+ and d− for protein X satisfies an equilibrium principle saying
that for a uniform choice of transition probabilities, protein X expected concentra-
tion is constant. Assuming that d− = p and d+ = 1/p leads to the resolution of an
equation of order 2 in p where the coefficients depend on the stationary distribution
π of the transition matrix. Here, the equation is

1/p πx+ + p πx− + 0.95× [1− πx+ − πx− ] = 1.

This equation have only one solution smaller than 1, p = 0.8818. Thus d+ = 1.1341
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and d− = 0.8818. The impact matrix for protein X is then
1.1341 0.95 0 0

0 0.95 0.8818 0
0 0 0 0.95

1.1341 0 0 0


This solution is described in matlab format in the matrix CostProtein X that de-
scribes the cost of ETG graph transitions on the protein X quantities (mainly, the
transitions involved and the cost for these transitions).

1.3 Probability inference

To demonstrate the interest of our modeling approach, we consider fictive experimental
data. The dataset is hence defined by the protein X concentration multiplied by 100 in 100
time unit or iterations. Assuming a multiplicative effect of the regulatory network on the
protein concentrations, it corresponds to an asymptotic growth rate (observable variable
of the system) of:

exp(log(100/1)/100) = 1.0471

One must find probabilities that allow to obtain such a growth rate. The inference of these
probabilities is performed by our matlab script using:

[BS,BM]=ETG_solve(ExempleSqueleton, {CostProtein_X}, {1.0471}, confidence);

where ExempleSqueleton is the {0, 1}-transition matrix and CostProtein X is a structure
describing the cost of protein X (mainly, the transitions involved and the cost for these
transitions), confidence if the maximal allowed error in the numerical computations. BM is
the matrix of probabilities that satisfy the protein growth rate, whereas BS is the euclidean
distance between the estimated growth rate, as computed using BM, and the optimal growth
rate as given by the experiments.

1.4 Plasticity of Event Transition Markov chain face to extreme param-
eters

In complementary to the results shown in the manuscript, one compares the distributions of
protein Y growth rates under various conditions. All these conditions are compared to the
distribution of a random case where both variables v1 and v2 are drawn uniformly. Then,
one considers two extreme conditions for the X growth rate. For instance, this parameters
may be equals to 0.97 for simulating a fast degradation of X protein, or 1.1 for simulating
a major burst of protein X production. In both cases, distributions of the Y growth rate

4



Bourdon et. al. 5

have been estimated by considering 10000 inferred probability matrices. One are then able
to compute their difference of estimated Y growth rate distributions between the “random”
condition and X growth rates in both extreme conditions.
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The difference in the distributions highlights the inherent plasticity of the Event Tran-
sition Markov chain to estimate protein growth rates in various conditions, despite the
major constraints given by the Event Transition Graph that restricts the quantitative be-
haviors.

2 Application to the gene regulatory network of Escherichia
coli under carbon starvation

2.1 Experimental data and model

As an application of our modeling approach, we consider the time series data extracted
from:

Ball CA, Osuna R, Ferguson KC, Johnson RC (1992) Dramatic changes in Fis levels upon
nutrient upshift in Escherichia coli J Bacteriol 174: 8043–56.

and represented in Fig. 2. For sake of simplification, concentrations of both proteins are
not represented by their absolute concentrations but rather converted into their respective
percentages of maximal observed concentration.

We used the biological model and corresponding biological assumptions as published in:
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times [ FIS ] [ CYA ] growth
(min) % % phase
0 75 75 stationary
2 10 1 stationary
30 20 1 stationary
55 50 1 stationary
70 80 1 stationary
80 100 1 exponential
100 50 100 exponential
110 30 - exponential
130 10 130 exponential
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Figure 2: Experimental data at disposal

Ropers, D., de Jong, H. D., Page, M., Schneider, D., & Geiselmann, J. (2006). Qualitative
simulation of the carbon starvation response in Escherichia coli. BioSystems, 84(2),
124-152.

Since the model is formalized in a Piecewise Affine Differential Equation system (PADE),
both its biological graph (ex: gene x activates the gene y transcription) or its formalization
of the dynamical system can be used to build an ETG. As an application, we used herein the
biological graph. The corresponding ETG is pictured in Figure 6 of the manuscript. Notice
that the switch between the two phases impacts the event transition graph by suppressing
two transitions (fis+ → crp− and complex → fis− in the stationary growth phase.

2.2 Training dataset and costs

For the sake of clarity, we expose here the data used for the training the model (i.e.
estimation of the probability matrices). Notice here that 3 data points are needed for
finding the information.

Protein costs. Following the equilibrium principle, one deduces these values for the
relative protein rates.

Protein d+ d−
FIS 1.4653 0.6825
CYA 2.0636 0.4846
CRP 1.4362 0.6963
TOPA 1.6181 0.6180
GYRAB 1.8662 0.5358
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times [ FIS ] [ CYA ] growth
(min) % % phase
2 10 - stationary
80 100 - exponential
130 10 - exponential
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Figure 3: Experimental data used for the parameter identification

Datasets. The concentration evolution rates can be determined for both phases, accord-
ing to Figure 2.2. For instance, the growing rate for FIS in the stationary growth phase,
computed by using is relative values at times 2 and 80 minutes, equals

log(100)− log(10)
80− 2

= 1.03.

This value says that FIS protein concentration increases by 3% each minute. In order to
use it in our model, it is necessary to obtain the corresponding rate per transition of the
model, and thus to know the number of iterations performed by the model in a one minute
duration. We argue that FIS, CYA and other proteins are degraded as soon as a sufficient
number of its amino acids are degraded. In accordance to the N-end rule [Alexander,
Varshavsky (1997). ”The N-end rule pathway of protein degradation”. Genes to Cells 2
(1): 13-28], we take a duration of 2 minutes as the minimal half-life for these animo-acids.
Thus, when taking a natural degradation rates of 5% per transition, the model runs n
iterations to degrade half of the present proteins, where n satisfies 0.95n = 0.5. Here,
n ≈ 14 implying that 7 iterations are reached per minute. Known concentration evolution
rates in both phases, expressed in a per iteration scale, are synthesized in the following
table:

Protein Stationary growth exponential growth
FIS 1.00421 0.99341

CYA 0.73462 1.03342

CRP ? ?
TOPA ? ?
GYRAB ? ?

1used for inference
2used for validation
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Mean values of the predicted concentration evolution rates in both phases (mean computed
using 100 points of the solution set):

Protein Stationary growth exponential growth
FIS 1.0042 0.9934
CYA 0.9506 1.0745
CRP 0.9506 1.0073
TOPA 0.9819 0.9987
GYRAB 0.9700 0.9675

Figure 4 depicts an example of probabilities assignment that satisfies the expected growth
ratios for protein FIS.

Figure 4: Event Transition graph and an example of corresponding probabilities after an
estimation based on experimental data such as given in Figure 3. Note herein that several
probabilities allow to fit the experimental knowledge.
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Model validation For the sake of validation of our modeling technique applied on E. coli,
we compare the time series predicted with those observed experimentally during both
growth phases. As previously mentioned, CYA and Fis concentration behaviors were in-
vestigated. A comparison between FIS and CYA observations and their respective predic-
tions by the model is performed. A Pearson correlation test confirms the accuracy of the
predictions. Notice that in the computed time-series, we set the value to 1 if the computed
value is smaller than 1 and to 100 is the computed value is greater than 100.

Time FIS CYA
obs pred obs pred

0 - - 75 75
2 10 10 1 37
30 20 23 1 1
55 50 47 1 1
70 80 73 1 1
80 100 99 1 1
100 50 40 100 100
110 30 25 100 100
130 10 10 75 100
R2 0.9937 0.9599
p-value 6.5 10−8 10−5 0 20 40 60 80 100 120 140
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2.3 Model predictions

It is also possible to predict other concentration evolutions, assuming, for instance, an
initial concentration of 50% for each unknown proteins. The resulting predictions are
depicted in Figure 5.

2.4 Sensitivity of the ETG transitions

Computing the sensitivity of the model allows to rank the transitions according their partial
derivative. The higher is the sensitivity of the transition, the higher it is constrained to
be equal to a fixed value. It is expressed in percentage having the following meaning: if
the given probability is changed by 1%, then the euclidean distance between the expected
growth ratio and their predictions is modified by X% (the given sensitivity). Each returned
sensitivity is computed as the mean over 100 transition matrices satisfying FIS observed
protein evolution. Such an information is useful to classify the transitions according to
their importance on the system. The sensitivities are depicted in Figure 6.
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Figure 5: Predictions of diverse protein concentrations related to the studied system.
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Figure 6: Event Transition graph and corresponding sensitivities after an estimation based
on experimental data such as given in Figure 3
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